fbpx
01 / 05
Debunking the Overpopulation Alarmists

Blog Post | Adoption of Technology

Debunking the Overpopulation Alarmists

"On what principle is it that with nothing but improvement behind us, we are to expect nothing but deterioration before us?"

Crowd of people, overpopulation worries

Is overpopulation a problem? Are we running out of resources? Where did the concern over population growth and resource depletion come from? How accurate were the past predictions of gloom by people who were concerned about the two issues? Will we manage to combine rising numbers of people and higher standards of living with decent stewardship of the planet in the future?

These are just some of the questions answered in Population Bombed: Exploding the link Between Overpopulation and Climate Change, an extensively researched, well-written and concise new book published by the Global Warming Policy Foundation.

The book comes out exactly 50 years after Paul R. Ehrlich published The Population Bomb, in which the Stanford University biology professor famously claimed that population growth would result in resource depletion and the starvation of hundreds of millions of people. The authors of Population Bombed, Pierre Desrochers, who is an associate professor of geography at the University of Toronto, and Joanna Szurmak, who is a doctoral candidate in the graduate program in Science and Technology Studies at York University, Toronto, take stock of past scholarship on “depletionism” and provide a cheerful rejoinder to the doomsayers.

Desrochers and Szurmak begin by outlining the case for the prosecution. The “pessimists” claim that, on a finite planet, population and consumption cannot continue to expand forever; that, to maintain a high standard of living, the number of people will have to come down; that resource exploration and extraction are subject to the law of diminishing returns and will, therefore, become more expensive over time; that discoveries, inventions and innovations do not obviate the need for more resources; and, finally, that human successes in overcoming resource constraints in the past are not relevant to coping with environmental challenges today.

Conversely, the “optimists” claim that population growth makes humanity richer through division of labour and economies of scale; that human ingenuity enhances efficient modes of production and “delivers increasing returns … [through] progressively less damaging ways of doing things”; that, unlike other animals, humans use trade and innovation to get around resource constraints; and, finally, that there is no reason why our past successes cannot be repeated in the future.

To quote the British historian Thomas Babington Macaulay, “On what principle is it that with nothing but improvement behind us, we are to expect nothing but deterioration before us?”

Depletionism has a long pedigree that goes back to the Atra-Hasis, an 18th-century BC epic in which the Babylonian gods deemed the world too crowded and unleashed a famine to fix the “problem”. Confucius, Plato, Tertullian, Saint Jerome and Giovanni Botero revisited the issue over the succeeding centuries.

The modern concern with overpopulation is usually traced to the British cleric Thomas Malthus who argued that the human population grows exponentially, while food production grows linearly. Thus, population will eventually outgrow the food supply, resulting in mass starvation.

Depletionism reached its apogee in the concluding decades of the 20th century, when Garrett Hardin pointed to the “tragedy of the commons” (i.e., overuse of resources that are not privately-owned), the Club of Rome predicted stratospheric prices of resources and Paul Ehrlich warned of mass starvation. It was Ehrlich who, unwisely, agreed to a wager with Julian Simon from the University of Maryland on the future availability of resources – and lost.

According to the wager, Ehrlich would choose a “basket” of raw materials that he expected would become less abundant in the coming years and choose a time period of more than a year, during which those raw materials would become more expensive. At the end of that period, the inflation-adjusted price of those materials would be calculated. If the “real” price of the basket was higher at the end of the period than at the beginning, that would indicate the materials had become more precious and Ehrlich would win the wager; if the price was lower, Simon would win. The stakes would be the ultimate price difference of the basket at the beginning and end of the time period.

Ehrlich chose copper, chromium, nickel, tin, and tungsten. The bet was agreed to on September 29, 1980, with September 29, 1990, being the payoff date. In spite of a population increase of 873 million over those 10 years, Ehrlich lost the wager. All five commodities that he had selected declined in price by an average of 57.6 percent. Ehrlich mailed Simon a check for $576.07. Today, raw materials, including rare earths, are abundant and the concept of depletionism, as originally understood, has ceased to be the pessimists’ cri de coeur.

Instead, the pessimists have changed their tack (somewhat). Rather than emphasising depletion of raw materials, like Ehrlich used to do, they now warn of human overconsumption and the related loss of biosphere integrity (the destruction of ecosystems and biodiversity), climate change, ocean acidification, land system change (from woodland to cropland), unsustainable freshwater use, perturbation of biogeochemical flows (nitrogen and phosphorus inputs to the biosphere), alteration of atmospheric aerosols (particulate concentration in the atmosphere), and ozone depletion.

Desrochers and Szurmak engage with many of these relatively new concerns by noting, for example, the methodological problems inherent in the overconsumption models, including the “planetary boundaries framework” that I described in the previous paragraph.

Wisely, the authors do not get bogged down in the science of global warming. Full discussion of global warming would, of course, require a book of its own. As it is, Population Bombed is 250 pages long, and includes 900 footnotes and an extensive 33-page bibliography. Instead, they call for honesty. They note that the use of fossil fuels is at the centre of today’s calls for population control and point out that the pessimists are simply taking the benefits of fossil fuel use, including environmental ones, for granted. Desrochers and Szurmak do not dismiss all concerns about CO2 in the atmosphere, but point out that getting rid of fossil fuels under present circumstances would have dire economic, social and environmental consequences – especially for the world’s poor.

To give just a few examples, production would have to become more expensive for businesses, the price of heating and cooling would become more expensive for households, and land, currently occupied by animals, would have to be covered by wind turbines.

That said, keep in mind that our species has addressed many environmental problems before and we will, probably, solve the future ones as well. Desalination, for example, can help with water shortages, while genetically-modified crops could eliminate the need for excessive use of fertiliser and pesticides. These breakthroughs, and the prospect of many more, make Desrochers and Szurmak’s book a reminder of humanity’s “can do” instincts and problem-solving ability.

This first appeared in CapX.

Blog Post | Cost of Services

Vision Abundance Doubles on the LASIK Eye Surgery Market

The time price of LASIK eye surgery fell by over 50 percent since 1998.

Summary: Time price calculations show that LASIK surgery costs have fallen significantly since 1998. Advancements in LASIK technology, such as the transition to bladeless methods and personalized treatments, have enhanced both safety and efficacy. Dr. Gholam A. Peyman’s pivotal patent in 1988 laid the foundation for LASIK innovation, contributing to its increased affordability and accessibility, especially in countries like China and India.


This article was published at Gale Winds on 2/28/2024.

According to Market Scope, the typical cost for LASIK surgery in 2023 was $4,492. This is up slightly from the 1998 price of $4,360. Let’s calculate and compare the time prices to see the true price difference. Unskilled hourly compensation in 1998 was around $7.75, indicating a time price of 562.6 hours. Unskilled hourly compensation is closer to $16.15 today, indicating a time price of 272.1 hours. The time price has fallen 51.6 percent. You get 2.07 eyes corrected today for the time it took to earn the money to correct one in 1998. LASIK has become 107 percent more abundant.

LASIK is the acronym for laser-assisted in situ keratomileusis. Keratomileusis is the medical term for corneal reshaping. Clearsight.com reports:

LASIK technology has significantly advanced since its inception. The initial blade-based approach has been replaced by the bladeless method, using femtosecond lasers for increased precision. Wavefront and topography-guided technology now allow for personalized treatment, while sophisticated eye-tracking systems enhance the surgery’s accuracy and safety. The remarkable advancements have not only improved visual acuity but also enhanced the overall quality of visual perception, offering patients the ability to see the world around them more clearly and vividly.

While thousands of ophthalmologists and researchers from all over the world have been involved in advancing the technology, Iranian-born immigrant to the United States Dr. Gholam A. Peyman was awarded the key patent in 1988. He holds over 200 US patents, including for novel medical devices, intraocular drug delivery, surgical techniques, and new methods of diagnosis and treatment. In 2011, President Barack Obama awarded Peyman the National Medal of Innovation and Technology.

Continuous innovation in LASIK technology is making vision correction safer, faster, more precise, and more affordable. If you want to save some money and take a bit more risk, the procedure is around $1,600 in China and under $1,000 in India. China performs the most vision correction procedures on the planet.

Remember, the learning curve ordains that with every doubling of production, costs per unit fall between 20 percent and 30 percent. This is because we discover valuable new knowledge every time we perform the procedure.

As noted, since 1998, LASIK has become 107 percent more abundant in the United States, in contrast to hospital services, which have become 37.7 percent less abundant. Why the huge difference? LASIK has been relatively free to innovate. Perhaps more important, health insurance does not pay for this procedure, and LASIK is globally competitive. We also note that elective procedures have enjoyed much greater abundance growth than insurance-covered surgeries.

When entrepreneurs are free to innovate and compete, prices fall and quality increases. The opposite happens when governments and bureaucrats step in to protect the status quo. Imagine where we would be today if the manufacturers of eyeglasses had prevented the innovation of contact lenses? Or the contact lens industry had prevented LASIK?

Blog Post | Adoption of Technology

Bitcoin Brought Electricity to Countries in the Global South

It won’t be the United Nations or rich philanthropists that electrifies Africa.

Summary: Energy is indispensable for societal progress and well-being, yet many regions, particularly in the Global South, lack reliable electricity access. Traditional approaches to electrification, often reliant on charity or government aid, have struggled to address these issues effectively. However, a unique solution is emerging through bitcoin mining, where miners leverage excess energy to power their operations. This approach bypasses traditional barriers to energy access, offering a decentralized and financially sustainable solution.


Energy is life. For the world and its inhabitants to live better lives—freer, richer, safer, nicer, and more comfortable lives—the world needs more energy, not less. There are no rich, low-energy countries and no poor, high-energy countries.

“Energy is the only universal currency; it is necessary for getting anything done,” in Canadian-Czech energy theorist Vaclav Smil’s iconic words.

In an October 2023 report for the Alliance for Responsible Citizenship on how to bring electricity to the world’s poorest 800 million people, Robert Bryce, author of A Question of Power: Electricity and the Wealth of Nations, sums it as follows:

Electricity matters because it is the ultimate poverty killer. No matter where you look, as electricity use has increased, so has economic growth. Having electricity does not guarantee wealth. But its absence almost always means poverty. Indeed, electricity and economic growth go hand in hand.

To supply electricity on demand to many of those people, especially in the Global South, grids need to be built in the first place and then have enough extra capacity to ramp up production when needed. That requires overbuilding, which is expensive and wasteful, and the many consumers of the Global South are poor.

Adding to the trouble are the abysmal formal institutions of property rights and rule of law in many African countries, and the layout of the land becomes familiar: corruption and fickle property rights make foreign, long-term investments basically impossible; poor populations mean that local purchasing power is low and usually not worth the investment risk.

What’s left are slow-moving charity and bureaucratic government development aid, both of which suffer from terrible incentives, lack of ownership, and running into their own sort of self-serving corruption.

In “Stranded,” a long-read for Bitcoin Magazine, Human Rights Foundation’s Alex Gladstein accounted for his journey into the mushrooming electricity grids of sub-Saharan Africa: “Africa remains largely unable to harness these natural resources for its economic growth. A river might run through it, but human development in the region has been painfully reliant on charity or expensive foreign borrowing.”

Stable supply of electricity requires overbuilding; overbuilding requires stable property rights and rich enough consumers over which to spread out the costs and financially recoup the investment over time. Such conditions are rare. Thus, the electricity-generating capacity won’t be built in the first place, and most of Africa becomes dark when the sun sets.

Gladstein reports that a small hydro plant in the foothills of Mount Mulanje in Malawi, even though it was built and financed by the Scottish government, still supplies exorbitantly expensive electricity—around 90 cents per kilowatt hour—with most of its electricity-generating capacity going to waste.

What if there were an electricity user, a consumer-of-last-resort, that could scoop up any excess electricity and disengage at a moment’s notice if the population needed that power for lights and heating and cooking? A consumer that could co-locate with the power plants and thus avoid having to build out miles of transmission lines.

With that kind of support consumer—guaranteeing revenue by swallowing any excess generation, even before any local homes have been connected—the financial viability of the power plants could make the construction actually happen. It pays for itself right off the bat, regardless of transmissions or the disposable income of nearby consumers.

If so, we could bootstrap an electricity grid in the poorest areas of the world where neither capitalism nor central planning, neither charity worker nor industrialist, has managed to go. That consumer of last resort could accelerate electrification of the world’s poorest and monetize their energy resilience. That’s what Gladstein went to Africa to investigate the bourgeoning industry of bitcoin miners electrifying the continent.

Bitcoin Saves the World: Energy-Poverty Edition

Africa is used to large enterprises digging for minerals. The bitcoin miners springing forth all over the continent are different. They don’t need to move massive amounts of land and soil and don’t pollute nearby rivers. They operate by running machines that guess large numbers, which is the cryptographic method that secures bitcoin and confirms its transaction blocks. All they need to operate is electricity and an internet connection.

By co-locating and building with electricity generation, bitcoin miners remove some major obstacles to bringing power to the world’s poorest billion. In the rural area of Malawi that Gladstein visited, there was nowhere to offload the expensive hydro power and no financing to connect more households or build transmission lines to faraway urban areas: “The excess electricity couldn’t be sold, so the power stations built machines that existed solely to suck up the unused power.”

Bitcoin miners are in a globally competitive race to unlock patches of unused energy everywhere, so in came Gridless, an off-grid bitcoin miner with facilities in Kenya and Malawi. Any excess power generation in these regions is now comfortably eaten up by the company’s onsite mining machines—the utility company receiving its profit share straight in a bitcoin wallet of its own control, no banks or governments blocking or delaying international payments, and no surprise government currency devaluations undercutting its purchasing power.

No aid, no government, no charity; just profit-seeking bitcoiners trying to soak up underused energy. Gladstein observes:

One night during my visit to Bondo, Carl asked me to pause as the sunset was fading, to look at the hills around us: the lights were all turning on, all across the foothills of Mt. Mulanje. It was a powerful sight to see, and staggering to think that Bitcoin is helping to make it happen as it converts wasted energy into human progress. . . .

Bitcoin is often framed by critics as a waste of energy. But in Bondo, like in so many other places around the world, it becomes blazingly clear that if you aren’t mining Bitcoin, you are wasting energy. What was once a pitfall is now an opportunity.

For decades, our central-planning mindset had us “help” the Global South by directing resources there—building things we thought Africans needed, sending money to (mostly) corrupt leaders in the hopes that schools be built or economic growth be kick-started. We squandered billions in goodhearted nongovernmental organization projects.

Even for an astute and serious energy commentator as Bryce, not once in his 40-page report on how to electrify the Global South did it occur to him that bitcoin miners—the very people who are turning the lights on for the poorest in the world—could play a crucial role in achieving that.

It’s so counterintuitive and yet, once you see it, so obvious. In the end, says Gladstein, it won’t be the United Nations or rich philanthropists that electrifies Africa “but an open-source software network, with no known inventor, and controlled by no company or government.”

Blog Post | Cost of Services

What Cosmetic Surgery Innovation Can Teach Us About Healthcare Costs

The average time price of 19 procedures has fallen by 50 percent since 1998.

Summary: Hospital services costs have surged, raising questions about the effectiveness of regulation and government intervention in the healthcare industry. To investigate the potential impact of free markets on cost trends, we examined the time prices of common cosmetic surgery procedures, which are elective and typically not covered by insurance. Our analysis reveals a significant decline in the relative time prices of these procedures, indicating increased abundance driven by innovation and market competition.


This article was published at Gale Winds on 2/21/2024.

The Bureau of Labor Statistics reports that since 1998, hospital services costs have increased 61 percent faster than average wages and far outpaced consumer price index inflation. This industry is highly regulated, and government restricts supply and subsidizes demand.

Would free markets help to reverse these cost trends? To answer this question, we looked at the time prices of 19 common cosmetic surgery procedures. These procedures are elective, and insurance companies typically don’t provide reimbursements. Cosmetic surgeons also have been relatively free to innovate, and cosmetic surgery centers are globally competitive.

The American Society of Plastic Surgeons annually publishes prices for a variety of procedures. We compared the nominal prices from 1998 to 2022 against the average hourly wage rates of unskilled and blue-collar workers. This gave us relative time prices over time.

The average time price fell by 50.3 percent over this 24-year period. For the time it took to earn the money to pay for one procedure in 1998, you could get over two procedures today. Procedure abundance has increased by over 100 percent. The time price of chemical peels and laser hair removal fell the fastest by 87.7 percent and 80.1 percent, respectively. However, two procedure costs increased: upper arm lifts increased by 6.7 percent and facelifts by 1.6 percent.

Bar chart displaying Nominal hourly wage rates from 1998 to 2022

The above analysis compares categories of wage earners over time, but what about individuals? We typically start as unskilled workers and then advance as we acquire more productive skills, knowledge, and experience. Categories remain constant while individuals are upwardly mobile. If we look at an unskilled worker who “upskilled” to a blue-collar worker, cosmetic surgery procedures have become dramatically more abundant.

From 1998 to 2022, nominal unskilled hourly wages increased by 102.8 percent, while blue-collar hourly compensation increased by 91.2 percent. The average between these two categories is 94.7 percent. If you started out in 1998 as an unskilled worker and moved up to a blue-collar worker, your nominal hourly compensation increased by 348.5 percent.

Comparing an upskilling worker’s hourly compensation to the prices of cosmetic procedures indicates that the average time price fell by 78.4 percent. These workers could get 4.63 procedures in 2022 for the time price of one in 1998. Personal cosmetic surgery abundance increased by 363.5 percent for upskilling workers, growing at a 6.6 percent compound annual rate, doubling every 11 years or so.

Blog Post | Cost of Technology

Macintosh Computer Prices at the Age of 40

Get over six new iMacs for the time price of one Macintosh in 1984.

This article was published at Gale Winds on 1/26/2024.

Image displays a Macintosh computer from 1984 and several iMac's from 2024

Steve Jobs introduced the Macintosh personal computer in 1984 at a retail price of $2,495. At the time, unskilled workers were earning around $5.00 per hour, putting the time price at 498 hours. Today, a new iMac can be bought for $1,299, and unskilled workers earn closer to $16.51 per hour, indicating a time price of 78.7 hours. The time price has decreased by 84.2 percent. A new iMac costs almost 420 hours less than a 1984 Mac. For the time it took to buy the new Mac in 1984, you can buy 6.33 iMacs today. Macintosh computer abundance has increased by 533 percent. This suggests a 4.85 percent compound annual rate, doubling in abundance every 14.4 years.

The 2024 iMac and the 1984 Mac are as different as a Ferrari and a bicycle in terms of speed and features. Ignoring the collector value, how many 1984 Macs would someone have to give you for a 2024 iMac? Most people would not trade at all. This would suggest the new iMac is infinitely better than the 1984 Mac.

Ridley Scott did the first Macintosh ad for the 1984 Super Bowl.

People like Steve Jobs have transformed our world with their creativity, vision, and entrepreneurship. We honor his life and work to lift humanity. Here is Jobs doing his first demo:

Here is another memorable ad that reflected his vision for creative work:

How many Steve Jobs were born today?