fbpx
01 / 05
Romer and Nordhaus: Worthy Nobel Winners

Blog Post | Economic Growth

Romer and Nordhaus: Worthy Nobel Winners

Nordhaus showed that the price of light collapsed as a result of innovation. Romer showed that human potential for innovation is infinite.

World in the palm of hands of Nobel winners

On Monday, William Nordhaus and Paul Romer were awarded the Nobel Prize in Economics. Nordhaus, the Sterling Professor of Economics at Yale University, is best known for his work in economic modelling and climate change. Romer, who teaches at New York University, is a pioneer of endogenous growth theory, which holds that investment in human capital, innovation, and knowledge are significant contributors to economic growth.

The two American economists’ research is vital in showing the way people underestimate the progress humanity has already made and the likelihood that it will continue well into the future.

In his 1996 paper, Do Real-Output and Real-Wage Measures Capture Reality? The History of Lighting Suggests Not, Nordhaus looked at the economics of light. Open fire, he noted, produced a mere 0.00235 lumens per watt (a lumen is a measure of how much visible light is emitted by a source.) Lumens per watt refers to the energy efficiency of lighting. A traditional 60 watt incandescent bulb, for example, produces 860 lumens.

A sesame lamp could produce 0.0597 lumens per watt; a sperm tallow candle 0.1009 lumens; whale oil 0.1346 lumens and an early town gaslamp 0.2464 lumens. An electric filament lamp, which was launched in 1883, achieved an unbelievable 2.6 lumens per watt and, due to subsequent technological improvements, managed to deliver an astonishing 14.1667 lumens by 1990. Yet that’s small beer compared to the compact fluorescent lightbulb, which delivered 68.2778 lumens per watt when it was launched in 1992.

William Nordhaus

Accompanying these amazing improvements in the efficiency of lighting was a collapse in its price, both in absolute terms and in terms of human labour. Nordhaus estimates that the price of light per 1,000 lumens was $785 in 1800. By 1992 that price had dropped to 23 cents (both figures are in 2018 dollars). That amounts to a reduction of 99.97 percent. Today, the monetary cost of lighting per 1,000 lumens is inconsequential.

Now, consider the price of lighting from the perspective of human labour. Prior to the Neolithic revolution, which put an end to our nomadic past and turned our species into agriculturalists, it took more than 50 hours of labor (mostly gathering wood) to “buy” 1,000 lumen hours of light. By 1800, it took about 5.4 hours.

By 1900, it took 0.22 hours. By 1992, 1,000 lumen hours required 0.00012 hours of human labor. That amounts to a reduction of close to 100 per cent. As Tyler Cowen of George Mason University noted, Nordhaus found that “GDP figures understate the true extent of growth, and show[ed] that the relative price of bringing light to humans has fallen more rapidly than GDP growth figures alone might indicate.”

Put differently, technological change, which is not fully captured in GDP figures, makes us underappreciate the tremendous advance in standards of living over that of our ancestors. Can that advance be sustained and, even, improved upon? That’s where Romer enters the picture.

Many people worry that rising standards of living are unsustainable. Economic growth, they fear, will lead to exhaustion of natural resources and civilisational collapse. Just last year, Stanford University biology professor Paul R. Ehrlich noted that “You can’t go on growing forever on a finite planet. The biggest problem we face is the continued expansion of the human enterprise … Perpetual growth is the creed of a cancer cell.”

The earth, it is true, is a closed system. One day, we might be able to replenish our resources from outer space by, for example, dragging a mineral-rich asteroid down to Earth. In the meantime, we have to make do with the resources we have. But, what exactly do we have?

Paul Romer

According to Romer, we do not know the full extent of our resources. That’s because what matters is not the total number of atoms on Earth, but the infinite number of ways in which those atoms can be combined and recombined. As he put it in his 2015 article “Economic Growth”:

Every generation has perceived the limits to growth that finite resources and undesirable side effects would pose if no new recipes or ideas were discovered. And every generation has underestimated the potential for finding new recipes and ideas. We consistently fail to grasp how many ideas remain to be discovered.

The difficulty is the same one we have with compounding. Possibilities do not add up. They multiply.… To get some sense of how much scope there is for more such discoveries, we can calculate as follows. The periodic table contains about a hundred different types of atoms. If a recipe is simply an indication of whether an element is included or not, there will be 100 x 99 recipes like the one for bronze or steel that involve only two elements. For recipes that can have four elements, there are 100 x 99 x 98 x 97 recipes, which is more 94 million. With up to five elements, more than 9 billion. Mathematicians call this increase in the number of combinations ‘combinatorial explosion.

Once you get to 10 elements, there are more recipes than seconds since the big bang created the universe. As you keep going, it becomes obvious that there have been too few people on earth and too little time since we showed up, for us to have tried more than a minuscule fraction of the all the possibilities.

Figuring out the availability of resources, therefore, is not about measuring the quantity of resources, as engineers do. It is about looking at the prices of resources, as economists do. In a competitive economy, humanity’s knowledge about the value of something tends to be reflected in its price. As new knowledge emerges, prices change accordingly.

Nordhaus showed that the price of light collapsed as a result of innovation. Romer showed that human potential for innovation is infinite. The two men are apostles of human progress and well deserving of the highest accolade that the discipline of economics can bestow.

Blog Post | Cost of Services

Vision Abundance Doubles on the LASIK Eye Surgery Market

The time price of LASIK eye surgery fell by over 50 percent since 1998.

Summary: Time price calculations show that LASIK surgery costs have fallen significantly since 1998. Advancements in LASIK technology, such as the transition to bladeless methods and personalized treatments, have enhanced both safety and efficacy. Dr. Gholam A. Peyman’s pivotal patent in 1988 laid the foundation for LASIK innovation, contributing to its increased affordability and accessibility, especially in countries like China and India.


This article was published at Gale Winds on 2/28/2024.

According to Market Scope, the typical cost for LASIK surgery in 2023 was $4,492. This is up slightly from the 1998 price of $4,360. Let’s calculate and compare the time prices to see the true price difference. Unskilled hourly compensation in 1998 was around $7.75, indicating a time price of 562.6 hours. Unskilled hourly compensation is closer to $16.15 today, indicating a time price of 272.1 hours. The time price has fallen 51.6 percent. You get 2.07 eyes corrected today for the time it took to earn the money to correct one in 1998. LASIK has become 107 percent more abundant.

LASIK is the acronym for laser-assisted in situ keratomileusis. Keratomileusis is the medical term for corneal reshaping. Clearsight.com reports:

LASIK technology has significantly advanced since its inception. The initial blade-based approach has been replaced by the bladeless method, using femtosecond lasers for increased precision. Wavefront and topography-guided technology now allow for personalized treatment, while sophisticated eye-tracking systems enhance the surgery’s accuracy and safety. The remarkable advancements have not only improved visual acuity but also enhanced the overall quality of visual perception, offering patients the ability to see the world around them more clearly and vividly.

While thousands of ophthalmologists and researchers from all over the world have been involved in advancing the technology, Iranian-born immigrant to the United States Dr. Gholam A. Peyman was awarded the key patent in 1988. He holds over 200 US patents, including for novel medical devices, intraocular drug delivery, surgical techniques, and new methods of diagnosis and treatment. In 2011, President Barack Obama awarded Peyman the National Medal of Innovation and Technology.

Continuous innovation in LASIK technology is making vision correction safer, faster, more precise, and more affordable. If you want to save some money and take a bit more risk, the procedure is around $1,600 in China and under $1,000 in India. China performs the most vision correction procedures on the planet.

Remember, the learning curve ordains that with every doubling of production, costs per unit fall between 20 percent and 30 percent. This is because we discover valuable new knowledge every time we perform the procedure.

As noted, since 1998, LASIK has become 107 percent more abundant in the United States, in contrast to hospital services, which have become 37.7 percent less abundant. Why the huge difference? LASIK has been relatively free to innovate. Perhaps more important, health insurance does not pay for this procedure, and LASIK is globally competitive. We also note that elective procedures have enjoyed much greater abundance growth than insurance-covered surgeries.

When entrepreneurs are free to innovate and compete, prices fall and quality increases. The opposite happens when governments and bureaucrats step in to protect the status quo. Imagine where we would be today if the manufacturers of eyeglasses had prevented the innovation of contact lenses? Or the contact lens industry had prevented LASIK?

Blog Post | Adoption of Technology

Bitcoin Brought Electricity to Countries in the Global South

It won’t be the United Nations or rich philanthropists that electrifies Africa.

Summary: Energy is indispensable for societal progress and well-being, yet many regions, particularly in the Global South, lack reliable electricity access. Traditional approaches to electrification, often reliant on charity or government aid, have struggled to address these issues effectively. However, a unique solution is emerging through bitcoin mining, where miners leverage excess energy to power their operations. This approach bypasses traditional barriers to energy access, offering a decentralized and financially sustainable solution.


Energy is life. For the world and its inhabitants to live better lives—freer, richer, safer, nicer, and more comfortable lives—the world needs more energy, not less. There are no rich, low-energy countries and no poor, high-energy countries.

“Energy is the only universal currency; it is necessary for getting anything done,” in Canadian-Czech energy theorist Vaclav Smil’s iconic words.

In an October 2023 report for the Alliance for Responsible Citizenship on how to bring electricity to the world’s poorest 800 million people, Robert Bryce, author of A Question of Power: Electricity and the Wealth of Nations, sums it as follows:

Electricity matters because it is the ultimate poverty killer. No matter where you look, as electricity use has increased, so has economic growth. Having electricity does not guarantee wealth. But its absence almost always means poverty. Indeed, electricity and economic growth go hand in hand.

To supply electricity on demand to many of those people, especially in the Global South, grids need to be built in the first place and then have enough extra capacity to ramp up production when needed. That requires overbuilding, which is expensive and wasteful, and the many consumers of the Global South are poor.

Adding to the trouble are the abysmal formal institutions of property rights and rule of law in many African countries, and the layout of the land becomes familiar: corruption and fickle property rights make foreign, long-term investments basically impossible; poor populations mean that local purchasing power is low and usually not worth the investment risk.

What’s left are slow-moving charity and bureaucratic government development aid, both of which suffer from terrible incentives, lack of ownership, and running into their own sort of self-serving corruption.

In “Stranded,” a long-read for Bitcoin Magazine, Human Rights Foundation’s Alex Gladstein accounted for his journey into the mushrooming electricity grids of sub-Saharan Africa: “Africa remains largely unable to harness these natural resources for its economic growth. A river might run through it, but human development in the region has been painfully reliant on charity or expensive foreign borrowing.”

Stable supply of electricity requires overbuilding; overbuilding requires stable property rights and rich enough consumers over which to spread out the costs and financially recoup the investment over time. Such conditions are rare. Thus, the electricity-generating capacity won’t be built in the first place, and most of Africa becomes dark when the sun sets.

Gladstein reports that a small hydro plant in the foothills of Mount Mulanje in Malawi, even though it was built and financed by the Scottish government, still supplies exorbitantly expensive electricity—around 90 cents per kilowatt hour—with most of its electricity-generating capacity going to waste.

What if there were an electricity user, a consumer-of-last-resort, that could scoop up any excess electricity and disengage at a moment’s notice if the population needed that power for lights and heating and cooking? A consumer that could co-locate with the power plants and thus avoid having to build out miles of transmission lines.

With that kind of support consumer—guaranteeing revenue by swallowing any excess generation, even before any local homes have been connected—the financial viability of the power plants could make the construction actually happen. It pays for itself right off the bat, regardless of transmissions or the disposable income of nearby consumers.

If so, we could bootstrap an electricity grid in the poorest areas of the world where neither capitalism nor central planning, neither charity worker nor industrialist, has managed to go. That consumer of last resort could accelerate electrification of the world’s poorest and monetize their energy resilience. That’s what Gladstein went to Africa to investigate the bourgeoning industry of bitcoin miners electrifying the continent.

Bitcoin Saves the World: Energy-Poverty Edition

Africa is used to large enterprises digging for minerals. The bitcoin miners springing forth all over the continent are different. They don’t need to move massive amounts of land and soil and don’t pollute nearby rivers. They operate by running machines that guess large numbers, which is the cryptographic method that secures bitcoin and confirms its transaction blocks. All they need to operate is electricity and an internet connection.

By co-locating and building with electricity generation, bitcoin miners remove some major obstacles to bringing power to the world’s poorest billion. In the rural area of Malawi that Gladstein visited, there was nowhere to offload the expensive hydro power and no financing to connect more households or build transmission lines to faraway urban areas: “The excess electricity couldn’t be sold, so the power stations built machines that existed solely to suck up the unused power.”

Bitcoin miners are in a globally competitive race to unlock patches of unused energy everywhere, so in came Gridless, an off-grid bitcoin miner with facilities in Kenya and Malawi. Any excess power generation in these regions is now comfortably eaten up by the company’s onsite mining machines—the utility company receiving its profit share straight in a bitcoin wallet of its own control, no banks or governments blocking or delaying international payments, and no surprise government currency devaluations undercutting its purchasing power.

No aid, no government, no charity; just profit-seeking bitcoiners trying to soak up underused energy. Gladstein observes:

One night during my visit to Bondo, Carl asked me to pause as the sunset was fading, to look at the hills around us: the lights were all turning on, all across the foothills of Mt. Mulanje. It was a powerful sight to see, and staggering to think that Bitcoin is helping to make it happen as it converts wasted energy into human progress. . . .

Bitcoin is often framed by critics as a waste of energy. But in Bondo, like in so many other places around the world, it becomes blazingly clear that if you aren’t mining Bitcoin, you are wasting energy. What was once a pitfall is now an opportunity.

For decades, our central-planning mindset had us “help” the Global South by directing resources there—building things we thought Africans needed, sending money to (mostly) corrupt leaders in the hopes that schools be built or economic growth be kick-started. We squandered billions in goodhearted nongovernmental organization projects.

Even for an astute and serious energy commentator as Bryce, not once in his 40-page report on how to electrify the Global South did it occur to him that bitcoin miners—the very people who are turning the lights on for the poorest in the world—could play a crucial role in achieving that.

It’s so counterintuitive and yet, once you see it, so obvious. In the end, says Gladstein, it won’t be the United Nations or rich philanthropists that electrifies Africa “but an open-source software network, with no known inventor, and controlled by no company or government.”

Blog Post | Cost of Services

What Cosmetic Surgery Innovation Can Teach Us About Healthcare Costs

The average time price of 19 procedures has fallen by 50 percent since 1998.

Summary: Hospital services costs have surged, raising questions about the effectiveness of regulation and government intervention in the healthcare industry. To investigate the potential impact of free markets on cost trends, we examined the time prices of common cosmetic surgery procedures, which are elective and typically not covered by insurance. Our analysis reveals a significant decline in the relative time prices of these procedures, indicating increased abundance driven by innovation and market competition.


This article was published at Gale Winds on 2/21/2024.

The Bureau of Labor Statistics reports that since 1998, hospital services costs have increased 61 percent faster than average wages and far outpaced consumer price index inflation. This industry is highly regulated, and government restricts supply and subsidizes demand.

Would free markets help to reverse these cost trends? To answer this question, we looked at the time prices of 19 common cosmetic surgery procedures. These procedures are elective, and insurance companies typically don’t provide reimbursements. Cosmetic surgeons also have been relatively free to innovate, and cosmetic surgery centers are globally competitive.

The American Society of Plastic Surgeons annually publishes prices for a variety of procedures. We compared the nominal prices from 1998 to 2022 against the average hourly wage rates of unskilled and blue-collar workers. This gave us relative time prices over time.

The average time price fell by 50.3 percent over this 24-year period. For the time it took to earn the money to pay for one procedure in 1998, you could get over two procedures today. Procedure abundance has increased by over 100 percent. The time price of chemical peels and laser hair removal fell the fastest by 87.7 percent and 80.1 percent, respectively. However, two procedure costs increased: upper arm lifts increased by 6.7 percent and facelifts by 1.6 percent.

Bar chart displaying Nominal hourly wage rates from 1998 to 2022

The above analysis compares categories of wage earners over time, but what about individuals? We typically start as unskilled workers and then advance as we acquire more productive skills, knowledge, and experience. Categories remain constant while individuals are upwardly mobile. If we look at an unskilled worker who “upskilled” to a blue-collar worker, cosmetic surgery procedures have become dramatically more abundant.

From 1998 to 2022, nominal unskilled hourly wages increased by 102.8 percent, while blue-collar hourly compensation increased by 91.2 percent. The average between these two categories is 94.7 percent. If you started out in 1998 as an unskilled worker and moved up to a blue-collar worker, your nominal hourly compensation increased by 348.5 percent.

Comparing an upskilling worker’s hourly compensation to the prices of cosmetic procedures indicates that the average time price fell by 78.4 percent. These workers could get 4.63 procedures in 2022 for the time price of one in 1998. Personal cosmetic surgery abundance increased by 363.5 percent for upskilling workers, growing at a 6.6 percent compound annual rate, doubling every 11 years or so.

Blog Post | Cost of Technology

Macintosh Computer Prices at the Age of 40

Get over six new iMacs for the time price of one Macintosh in 1984.

This article was published at Gale Winds on 1/26/2024.

Image displays a Macintosh computer from 1984 and several iMac's from 2024

Steve Jobs introduced the Macintosh personal computer in 1984 at a retail price of $2,495. At the time, unskilled workers were earning around $5.00 per hour, putting the time price at 498 hours. Today, a new iMac can be bought for $1,299, and unskilled workers earn closer to $16.51 per hour, indicating a time price of 78.7 hours. The time price has decreased by 84.2 percent. A new iMac costs almost 420 hours less than a 1984 Mac. For the time it took to buy the new Mac in 1984, you can buy 6.33 iMacs today. Macintosh computer abundance has increased by 533 percent. This suggests a 4.85 percent compound annual rate, doubling in abundance every 14.4 years.

The 2024 iMac and the 1984 Mac are as different as a Ferrari and a bicycle in terms of speed and features. Ignoring the collector value, how many 1984 Macs would someone have to give you for a 2024 iMac? Most people would not trade at all. This would suggest the new iMac is infinitely better than the 1984 Mac.

Ridley Scott did the first Macintosh ad for the 1984 Super Bowl.

People like Steve Jobs have transformed our world with their creativity, vision, and entrepreneurship. We honor his life and work to lift humanity. Here is Jobs doing his first demo:

Here is another memorable ad that reflected his vision for creative work:

How many Steve Jobs were born today?