fbpx
01 / 05
Ridley: Nuclear Fusion Could Provide Unlimited Energy

Blog Post | Energy Production

Ridley: Nuclear Fusion Could Provide Unlimited Energy

Unlimited cheap energy would transform society.

Nuclear Fusion provides the world with unlimited energy

Until 2004 Britain was a net energy exporter. Today, it imports about half its energy. Some of that, in the form of coal and liquefied natural gas, comes directly from Russia, which also supplies a third of Europe’s gas through pipelines. The unprecedented “gas deficit warning” of March 2 was a sharp reminder of our dependence on imports.

Yet Britain is swimming in energy. Enough sunlight falls on the country to power the economy many times over. Wind, wave, water and tidal power cascade over us. There is wood in our forests. There are hot rocks beneath Cornwall and Durham, gas under Lancashire and enough coal under the North Sea to last centuries. We could easily buy sufficient uranium to keep us going indefinitely. And if we were to crack nuclear fusion, all we would need is a little bit of water and some Cornish lithium.

So what’s the problem? The human race has a plethora of options for powering civilisation in the 21st century, not a dearth. The problem is not energy, but energy conversion. Economic growth is effectively a matter of turning energy into complex structures that can be energised to do work. Energy conversion is the lifeblood of civilisation. Just as biology harnesses energy to build bodies and ideas, so human society captures energy to make physically improbable entities such as buildings, governments and social-media platforms. Energy conversion enables us to avoid entropy, the drift towards chaos.

The modern world stands on a cairn built by energy conversions in the past. Just as it took many loaves of bread and nosebags of hay to build Salisbury Cathedral, so it took many cubic metres of gas or puffs of wind to power the computer and develop the software on which I write these words. The Industrial Revolution was founded on the discovery of how to convert heat into work, initially via steam. Before that, heat (wood, coal) and work (oxen, people, wind, water) were separate worlds.

To be valuable, any conversion technology must produce reliable, just-in-time power that greatly exceeds — by a factor of seven and upwards — the amount of energy that goes into its extraction, conversion and delivery to a consumer. It is this measure of productivity, EROEI (energy return on energy invested), that limits our choice.

By the EROEI criterion, biofuel is a disastrous choice, requiring about as much tractor fuel to grow as you get out in ethanol or biodiesel. Wind power has a low energy return, because its vast infrastructure is energetically costly and needs replacing every two decades or so (sooner in the case of the offshore turbines whose blades have just expensively failed), while backing up wind with batteries and other power stations reduces the whole system’s productivity. Geothermal too may struggle, because turning warm water into electricity entails waste. Solar power with battery storage also fails the EROEI test in most climates. In the deserts of Arabia, where land is nearly free, sunlight abundant and gas cheap, solar power backed up with gas at night may be cheap.

Fossil fuels have amply repaid their energy cost so far, but the margin is falling as we seek gas and oil from tighter rocks and more remote regions. Nuclear fission passes the EROEI test with flying colours but remains costly because of ornate regulation.

Which brings me to nuclear fusion, a process potentially with a wildly positive EROEI (it fuels the sun and the H-bomb) but that so far has proved impossible to control. Fusion’s ever-receding promise suggests caution, but a British company, Tokamak Energy, is increasingly confident it can generate electricity by 2030, ahead of its American rivals. It forecasts ten large (1.5 GWe) power plants a year being built by 2035, and a hundred by 2040. It is a cheeky, private-sector upstart challenging the slow, international, public-sector collaboration on fusion.

The new fusion optimists base their confidence on yttrium barium copper oxide (YBCO), a novel superconducting material that allows smaller, less cold but more powerful magnets. Britain is a world leader in YBCO technology, so it is not impossible that we could see a breakthrough here in the next two decades comparable to Thomas Newcomen’s steam invention of 1712.

Suppose fusion does make the “too cheap to meter” breakthrough that fission failed to make. We could then stop worrying about carbon dioxide, but what would we do with all this energy? We could make as much fresh water as we fancied, through desalination, to water the deserts. We could grow food indoors to release the countryside for nature. We could electrify all transport. We could enable Africa to become as wealthy as America.

A green misery-monger called Paul Ehrlich once wrote that giving cheap, abundant energy to humanity would be like “giving an idiot child a machine gun”. On the contrary, cutting the cost of energy is absolutely central to delivering prosperity and fairness. This is why it is so baffling that Britain keeps pushing up the price of energy to encourage the medieval technologies of wood, wind and water power.

Professor Dieter Helm’s official review of government energy policy last year found that we could have reduced carbon dioxide emissions for far less than the £100 billion already spent on renewables by encouraging a switch to gas. But, as he says, governments are bad at picking winners, while losers are good at picking governments. Meanwhile, Germany, which has spent something like a trillion euros on support for green energy, is now building lots of coal-fired power to keep the lights on.

At huge cost, Germany is learning that you cannot have a cheap, reliable, low-carbon grid without the high EROEI of nuclear. The Energiewende is a historic error. But is there any guarantee governments would suddenly be more rational if fusion came along?

To be valuable, any conversion technology must produce reliable, just-in-time power that greatly exceeds — by a factor of seven and upwards — the amount of energy that goes into its extraction, conversion and delivery to a consumer. It is this measure of productivity, EROEI (energy return on energy invested), that limits our choice.

You could make your own electricity on an exercise bicycle, eating organic ice cream as fuel, but such a system would have wildly negative EROEI once you include the energetics of farming cattle and making ice cream. It would also produce a pathetic trickle of power: about 50 watts (joules per second). The average Briton uses about 4,000 watts, as much energy as if she had 240 slaves on exercise bicycles in the back room, pedaling eight-hour shifts. That’s roughly what “civilisation” looked like in Ancient China Egypt or China.

By the EROEI criterion, biofuel is a disastrous choice, requiring about as much tractor fuel to grow as you get out in ethanol or biodiesel. Wind power has a low energy return, because its vast infrastructure is energetically costly and needs replacing every two decades or so (sooner in the case of the offshore turbines whose blades have just expensively failed), while backing up wind with batteries and other power stations reduces the whole system’s productivity. Geothermal too may struggle, because turning warm water into electricity entails waste. Solar power with battery storage also fails the EROEI test in most climates. In the deserts of Arabia, where land is nearly free, sunlight abundant and gas cheap, solar power backed up with gas at night may be cheap.

Fossil fuels have amply repaid their energy cost so far, but the margin is falling as we seek gas and oil from tighter rocks and more remote regions. Nuclear fission passes the EROEI test with flying colours but remains costly because of ornate regulation.

Which brings me to nuclear fusion, a process potentially with a wildly positive EROEI (it fuels the sun and the H-bomb) but that so far has proved impossible to control. Fusion’s ever-receding promise suggests caution, but a British company, Tokamak Energy, is increasingly confident it can generate electricity by 2030, ahead of its American rivals. It forecasts ten large (1.5 GWe) power plants a year being built by 2035, and a hundred by 2040. It is a cheeky, private-sector upstart challenging the slow, international, public-sector collaboration on fusion.

The new fusion optimists base their confidence on yttrium barium copper oxide (YBCO), a novel superconducting material that allows smaller, less cold but more powerful magnets. Britain is a world leader in YBCO technology, so it is not impossible that we could see a breakthrough here in the next two decades comparable to Thomas Newcomen’s steam invention of 1712.

Suppose fusion does make the “too cheap to meter” breakthrough that fission failed to make. We could then stop worrying about carbon dioxide, but what would we do with all this energy? We could make as much fresh water as we fancied, through desalination, to water the deserts. We could grow food indoors to release the countryside for nature. We could electrify all transport. We could enable Africa to become as wealthy as America.

A green misery-monger called Paul Ehrlich once wrote that giving cheap, abundant energy to humanity would be like “giving an idiot child a machine gun”. On the contrary, cutting the cost of energy is absolutely central to delivering prosperity and fairness. This is why it is so baffling that Britain keeps pushing up the price of energy to encourage the medieval technologies of wood, wind and water power.

Professor Dieter Helm’s official review of government energy policy last year found that we could have reduced carbon dioxide emissions for far less than the £100 billion already spent on renewables by encouraging a switch to gas. But, as he says, governments are bad at picking winners, while losers are good at picking governments. Meanwhile, Germany, which has spent something like a trillion euros on support for green energy, is now building lots of coal-fired power to keep the lights on.

At huge cost, Germany is learning that you cannot have a cheap, reliable, low-carbon grid without the high EROEI of nuclear. The Energiewende is a historic error. But is there any guarantee governments would suddenly be more rational if fusion came along?

This first appeared in The Times of London.

Curiosities | Energy Prices

Firewood in the American Economy: 1700 to 2010

“Beginning in the last decade of the 18th century, firewood output increased from about 18% of GDP to just under 30% of GDP in the 1830s. The value of firewood fell to less than 5% of GDP by the 1880s. Prior estimates of firewood output in the 19th century significantly underestimated its value.”

From National Bureau of Economic Research.

Blog Post | Energy Prices

The Declining Time Price of Kilowatt-Hours

We're getting more energy for less time.

Summary: Energy powers economic progress, and it has become much more abundant since 1980. Despite nominal price increases, electricity is more affordable in terms of labor. A blue-collar worker today can buy much more electricity per hour worked than in 1980. Thanks to rising productivity and innovation, we’re getting significantly more energy for less time.


Energy is essential to creating abundance. Whether it’s used to organize and move atoms or to store and transmit information, economic development depends on energy. Although energy is available in many forms and measured in various units, the kilowatt-hour (kWh) is a common standard of comparison, especially in electricity-related contexts. A kWh represents the energy delivered by one kilowatt of power sustained over one hour. For perspective, a standard 42-gallon barrel of crude oil contains approximately 1,700 kWh of energy, though the exact amount depends on the oil’s grade.

The US Bureau of Labor Statistics (BLS) tracks average electricity prices over time in nominal terms. The chart below shows the U.S. average price per kWh from 1980 to the present—rising from about 6 cents per kWh in 1980 to 17.6 cents today.

To convert the money price into a time price, we compared the US blue-collar hourly compensation rate for each year, indexing 1980 as the baseline (1.0). The result shows that the time required to purchase a kWh of electricity has declined by 26.6 percent since 1980.

Another way to understand electricity prices is to ask: how many kWh can you buy with one hour of work? This chart illustrates that relationship. In 1980, an hour of US blue-collar labor could buy 152 kWh; today, it buys 207 kWh—a 36 percent increase in energy abundance.

The regression line plotted on the chart suggests a steady gain of about two additional kWh per year for the same amount of work. Although time prices have spiked in the past three years, the long-term trend still indicates growing abundance..

If you started your first job as an unskilled worker in 1980 and “upskilled” to a blue-collar job by 2024, your time price for electricity would have dropped by 67.3 percent. For the time it took to earn enough to buy 100 kWh in 1980, you could now purchase 306 kWh—representing a 206 percent increase in electricity abundance.

Find more of Gale’s work at his Substack, Gale Winds.

News | Energy Production

Fusion Breakthrough Could Reduce Cost of Future Power Plant

“TAE Technologies, a private fusion energy company developing the cleanest and safest approach to commercial fusion power, has achieved a first-of-its-kind breakthrough that fundamentally advances the performance, practicality and reactor-readiness of the company’s proprietary fusion technology.

Experimental results published in the peer-reviewed journal Nature Communications prove TAE has invented a streamlined approach to form and optimize plasma that increases efficiency, significantly reduces complexity and cost, and accelerates the company’s path to net energy and commercial fusion power.”

From TAE.