“Materials innovation is one of the key drivers of major technological breakthroughs. The discovery of lithium cobalt oxide in the 1980s laid the groundwork for today’s lithium-ion battery technology. It now powers modern mobile phones and electric cars, impacting the daily lives of billions of people. Materials innovation is also required for designing more efficient solar cells, cheaper batteries for grid-level energy storage, and adsorbents to recycle CO2 from atmosphere.
Finding a new material for a target application is like finding a needle in a haystack. Historically, this task has been done via expensive and time-consuming experimental trial-and-error. More recently, computational screening of large materials databases has allowed researchers to speed up this process. Nonetheless, finding the few materials with the desired properties still requires the screening of millions of candidates.
Today, in a paper published in Nature, we share MatterGen, a generative AI tool that tackles materials discovery from a different angle. Instead of screening the candidates, it directly generates novel materials given prompts of the design requirements for an application. It can generate materials with desired chemistry, mechanical, electronic, or magnetic properties, as well as combinations of different constraints. MatterGen enables a new paradigm of generative AI-assisted materials design that allows for efficient exploration of materials, going beyond the limited set of known ones.”
From Microsoft.