01 / 05
India’s Good Fortune: How the Country Is Tackling Energy Poverty, Increasing Growth, and Building the Future

Blog Post | Economic Growth

India’s Good Fortune: How the Country Is Tackling Energy Poverty, Increasing Growth, and Building the Future

Energy poverty and many other problems will soon be things of the past for India.

Summary: Over the past two decades, India has made remarkable strides in multidimensional poverty reduction. This comprehensive measure, which considers factors like education and infrastructure alongside income, paints a more accurate picture of poverty. Additionally, India has achieved significant progress in areas such as child mortality, sanitation, access to clean water, and electricity, signaling a positive trajectory for improved living standards and environmental outcomes in the country.

Just two decades ago, life in India looked bleak. Between 2005 and 2006, 55.1 percent of the Indian population—the equivalent of 645 million people—suffered from multidimensional poverty, and in 2004, 39.9 percent of Indians lived in extreme poverty.

Multidimensional poverty measures the percentage of households in a country deprived along three factors: monetary poverty, access to education, and basic infrastructure services. That captures a more thorough picture of poverty.

Multidimensional poverty dropped from over half of the population to 27.7 percent (370 million people) in 2014. In 2019–21, the proportion of people suffering from multidimensional poverty declined further to only 16.4 percent of the total population, or 230 million people. Although the pandemic slowed some aspects of poverty alleviation, the percentage of people in multidimensional poverty has continued to drop significantly year on year in India.

It’s also worth considering extreme poverty, which is defined as living below the international poverty line of $2.15 per day. Using this measure, the number of people living in extreme poverty in India declined from more than half of the population (63.1 percent) in 1977 to only 10 percent in 2019.

Moreover, child mortality declined from 43.4 percent in 1918 to only 3.1 percent in 2021. The number of people without adequate sanitation has dropped from 50.4 percent to 11.3 percent, and the proportion of people without adequate drinking water has fallen from 16.4 percent to just 2.7 percent. As well, more people in the country have access to clean cooking fuels than ever before, from 22.3 percent of people in 2000 to 67.9 percent in 2020.

India has also been tackling environmental concerns. The population of the greater one-horned rhino, which has a “vulnerable” conservation status, has increased from 40 in 1966 to over 4,000 in 2021. Air pollution is one of the world’s largest health and environmental problems, and in low-income countries, it is often the leading risk factor for death. Although there is still work to do, the death rate in India from air pollution decreased from 1990 to 2019 by 42 percent, from 280.5 deaths per 100,000 people to 164.1 deaths per 100,000.

In 2017, Indian Prime Minister Modi launched a plan to electrify more households, targeting over 40 million families in rural and urban India, or roughly a quarter of the population. The plan was called “Saubhagya”—literally, “good fortune” or “auspiciousness.” Although the country did not meet its target as quickly as planned, access to electricity in India has been increasing.

The term “access to electricity” does not have a universally accepted definition, but general usage takes into account the availability of electricity, safe cooking facilities, and a minimum level of consumption. According to the International Energy Agency, “access to electricity” involves more than just connecting a household to the grid; it also requires households to consume a certain minimum amount of electricity, which varies based on whether it is a rural or urban household.

According to the UNDP report, 97.9 percent of Indians had access to electricity between 2019 and 2021. Only 50.9 percent of Indians had access to electricity in 1993. The country has achieved immense progress. In 2018, Prime Minister Modi stated that every village in India had access to electricity.

Climate change is likely to be costly to the Indian subcontinent. Heatwaves have already led to an increase in deaths in India, particularly since a large share of the population is employed in outdoor labor like farming and construction.

India aims to reach net-zero emissions by 2070 and for 50 percent of the power-generation capacity to come from clean energy sources by 2030. The energy transition for India will take time, and the country will need fossil fuels to meet its energy needs for many years yet, but the future is looking promising.

Last year, for example, India brought an indigenous reactor design online at the Kakrapar Atomic Power Project Unit 4. India has 22 working nuclear reactors, which produce about 3 percent of the country’s electricity. India has ambitious plans to build more reactors—aiming to commission a new reactor every year.

The fact that a large country can more than halve multidimensional poverty in only 15 years is a cause for celebration, but India’s foresight of meeting future increasing energy needs is also something to be applauded. Energy poverty will soon be a thing of the past for India. Increased electricity will lead to further poverty alleviation, economic growth, and improved living standards, which in turn will lead to better air quality and environmental outcomes. These are good fortunes that we can all celebrate.

Bureau of Land Management | Energy Production

BLM Expedites Geothermal Energy Permitting

“To improve permitting of geothermal energy exploration on public lands, the Bureau of Land Management today adopted two existing categorical exclusions from the United States Forest Service and the Department of the Navy. The categorical exclusions will enable the agency to expedite the review and approval of geothermal exploration proposals.”

From Bureau of Land Management.

BBC | Science & Technology

How AI Is Helping to Prevent Future Power Cuts

“AI is also now being used to protect the physical infrastructure that carries electricity to our homes.

One company, Buzz Solutions, uses AI to scan through imagery of electricity cables, pylons and substations, identifying signs of damage such as broken parts or rust.

The system also identifies when trees and other greenery are growing too close to power lines.

Not only can this prevent power outages from damaged lines, but it can also reduce the risk of wildfires.”

From BBC.

TechCrunch | Energy Production

Electricity and Air Converted into Synthetic Natural Gas

“Instead of reducing humanity’s dependence on hydrocarbons — which is impossible or undesirable or both, depending on who you ask — Terraform Industries’ solution is to produce this resource, using electricity and air, via a system it calls the Terraformer. Today, the startup is announcing that it has commissioned a demonstrator Terraformer and produced synthetic natural gas for the first time.

Roughly the size of two shipping containers, the Terraformer consists of three subsystems: an electrolyzer, which converts solar power into hydrogen; a direct air capture system that captures CO2; and a chemical reactor that ingests both these inputs to produce pipeline-grade synthetic natural gas. The entire machine is optimized for a one-megawatt solar array.”

From TechCrunch.

Blog Post | Energy Prices

Where Is Gasoline the Most Affordable?

Remember that it’s the time price, not the money price, that counts.

Summary: The affordability of gasoline varies significantly worldwide due to varying taxes and subsidies. Analyzing the GDP per hour worked against the money price per gallon shows that the United States emerges as the most affordable country for purchasing gasoline, even compared to nations where gasoline prices are heavily subsidized by the government.

According to GlobalPetrolPrices.com, the average price of gasoline around the world is USD5.03 per gallon. However, there is substantial difference in these prices among countries due to the various taxes and subsidies for gasoline. All countries have access to the same petroleum prices of international markets, but countries do not all impose the same taxes. As a result, the retail price of gasoline varies significantly.

Graph displays the gasoline price per gallon in US dollars in various countries

The money price of 16 selected countries ranges from $2.26 in Russia to $8.55 in Denmark. But what about the time price? To calculate the time price, we first calculated the GDP per hour worked in each country. The data to calculate this ratio come from the World Bank and the Conference Board.

Graph displays the GDP per hour worked in various countries

We then divided GDP per hour worked by the money price per gallon. This gave us the gallons of gasoline that one hour of work would buy in each country:

Graph displays the gallons of gasoline per GDP per hour worked in various countries

We also divided the nominal price per gallon by GDP per hour worked to get the minutes required per gallon:

This chart illustrates how much more expensive relative to the US the other 15 countries are in terms of time price:

Chart displays the cost in time price of gasoline in 15 countries

Of the 16 countries analyzed, the US is by far the most affordable place to buy gasoline. There are other countries where gasoline is more affordable, but the gasoline price in those countries is heavily subsidized by government.

Tip of the Hat: Jeremy Horpendahl

This article was published at Gale Winds on 4/1/2024.