01 / 05
Musical Abundance

Blog Post | Innovation

Musical Abundance

For the time it took our grandparents to earn the money to buy one song in 1955, we get 19,750 songs today.

Summary: Thanks to technological innovations and economic growth, the time and money required to access music has plummeted over the decades. This article explores how personal music abundance has increased since 1955 and what it means for human creativity and well-being.

Thomas Edison developed the original phonograph record in 1877. The first playable records were made from paper pressed between two pieces of tin foil.

On March 15, 1949, RCA Victor became the first label to roll out 45 rpm vinyl records. They were smaller and held less music than the popular 78s and were printed in different colors. Rolling Stone notes, “Teenagers of the Fifties took to the portable, less-expensive format; one ad at the time priced the records at 65 cents each. One of rock’s most cataclysmic early hits, Bill Haley and the Comets’ ‘Rock Around the Clock,’ sold 3 million singles in 1955.”

Unskilled workers in 1955 were earning around 97 cents an hour. This puts the time price of a song at 40 minutes of work.

Apple launched the iTunes Store on April 28, 2003, and sold songs for 99 cents. By this time, unskilled wages had increased to $9.25 an hour. The time price of a song had dropped 84 percent to 6.42 minutes of work. Listeners in 2003 got six songs for the price of one in 1955.

Apple Music launched on June 30, 2015. Today a student can get access to 90 million songs for $5.99 a month. Unskilled workers are earning around $14.53 an hour, so the time price is around 25 minutes of work. Users stream as well as download albums and tracks to devices for offline playback. If a typical song runs three to four minutes, you can play 12,342 songs per month. The time price per song is around one-eighth of a second of work. 

For the time it took our grandparents to earn the money to buy one song in 1955, we get 19,750 songs today. Since 1955, personal music abundance has been growing around 15.9 percent a year, doubling in abundance every 4.5 years.

All of the products we enjoy today are the culmination of billions and billions of little bits of knowledge that humans discover and then share with the rest of us in free markets. Create a song and share it with the planet. We can lift ourselves up and make life better for one another.

Do we still have problems? Of course we do. And we will always face challenges. But look at what we have accomplished in the last 200 years. This is what happens when people are free to solve one another’s problems.

You can learn more about these economic facts and ideas in our new book, Superabundanceavailable on Amazon.

Blog Post | Progress Studies

What Are the Causes of Human Progress?

The escape from stagnation has always required a culture of optimism and progress.

Summary: Human progress requires a culture of openness to change and innovation, which historically has been rare and resisted by established elites. Periods of remarkable achievement, like that seen in Enlightenment Europe, occurred when societies embraced new ideas and allowed for intellectual and economic freedom. The key to sustained progress lies in maintaining a culture of optimism and a politico-economic system that encourages innovation rather than suppressing it.

To make progress, we must do something differently from what we did yesterday, and we must do it faster, better, or with less effort. To accomplish that, we innovate, and we imitate. That takes a certain openness to surprises, and that openness is rare. It is difficult to come up with something that never existed. It’s also dangerous, since most innovations fail.

If you live close to subsistence level, you don’t have a margin for error. So, if someone wants to hunt in a new way or experiment with a new crop, it is not necessarily popular. There is a reason why most historical societies that came up with a way of sustaining themselves tried to stick to that recipe and considered innovators troublemakers.

That means that innovation depended on stumbling on a new way of doing things. Someone came up with a new and better tool or method by accident or by imitating nature or another tribe. But when populations were small, few people accidentally came across a great new way of doing things, and there were few people to imitate. In other words, there is a limit to what can be done in small, isolated societies.

It took greater population density and links to other groups to get the process of innovation and specialization going. Cultures at the crossroads between different civilizations and traditions were exposed to other ways of life as merchants, migrants, and military moved around. By combining different ideas, they set the process of innovation in motion. Ideas started having sex with each other, in the British writer Matt Ridley’s memorable phrase.

Such openness gave rise to extraordinary periods of achievement in cultures like ancient Greece and Rome, Abbasid Baghdad, and Song China. They were, as the American economist Jack Goldstone calls them, “efflorescences”—sharp and unexpected upturns that did not become self-sustaining and accelerating. They did not last.

The American economic historian Joel Mokyr talks about that as Cardwell’s Law—named after the technology historian D. S. L. Cardwell, who observed that most societies remained creative only for a short period. Often, they were ruined by external enemies, since poorer states and roving bandits are attracted by the former’s wealth.

But there are also enemies within. Every act of major technological innovation is “an act of rebellion against conventional wisdom and vested interests,” explains Mokyr. And conventional wisdom and vested interest have a way of fighting back.

Economic, intellectual, and political elites in every society have built their power on specific methods of production and a certain set of mythologies and ideas. The vested interests have an incentive to stop or at least control innovations that risk upsetting the status quo. They try to reimpose orthodoxies and reduce the potential for surprises, and sooner or later they win, the efflorescence is stamped out, and society reverts to the long stagnation.

An escape from stagnation requires a culture of optimism and progress to justify and encourage innovation, and it takes a particular politico-economic system to give people the freedom to engage in the continuous creation of novelty.

Enlightenment and Classical Liberalism

Luckily, this culture emerged forcefully in western Europe in the 17th and 18th centuries, in the form of the Enlightenment, which replaced superstition and authority with the ideals of reason, science, and humanism, as the Canadian psychologist Steven Pinker summarizes it, and classical liberalism, which removed political barriers to thought, debate, innovation, and trade.

It was the combined forces of the Enlightenment and classical liberalism that reduced intellectual and economic elites’ power to stamp out progress. Cardwell’s Law started to break down, and the road opened for individualists, innovators, and industrialists to change our world forever.

Why did this happen in Europe, and why then? There are two traditionally competing narratives, one associated with the right and one with the left, and they are equally wrong. According to the first, it was because Europeans were better than others (perhaps because of natural superiority, the legacy of the ancients, or Christianity). According to the second, it was because Europeans were worse than others (perhaps because of slavery, colonialism, and imperialism).

The problem with the first explanation is that experimentation in science, technology, and capitalism had been present in previous pagan, Muslim, Confucian, and other cultures. In fact, Europe imported and improved upon many non-European advances. The problem with the second explanation is that all previous civilizations also engaged in slavery, colonialism, and imperialism when they had a chance. Yet, they remained poor. So, what made Europe more successful must have been something else.

As noted, elites everywhere reacted to surprising innovations by trying to enforce political authority and intellectual orthodoxy. What made Europe different was that the elites failed. Unlike the Chinese or Ottoman empires, Europe was blessed with political and jurisdictional fragmentation, which has been emphasized by scholars like the British-Australian economic historian Eric Jones and the English historian Stephen Davies.

European rulers had the same ambitions to conquer and control, but on a peninsula of peninsulas, they were halted at mountain ranges, bodies of waters, riverine marshes, and forested landscape. Therefore, Europe was split into a mindboggling array of polities, independent cities, autonomous universities, and different religious denominations.

Hundreds of different sovereigns could not coordinate repression and impose one orthodoxy on all. That always left room for thinkers, entrepreneurs, and banned books to migrate to the jurisdiction most hospitable to their particular heresy. The Protestant Reformation was a further blow to ambitions for universal authority. How can you revert to a trusted authority when you don’t know which authority to trust? Nullius in verba (take nobody’s word for it), was not just the motto of the Royal Society, founded in London in 1660, but the spirit of the whole Enlightenment project.

European princes discovered that rivals who welcomed more migrant scientists, entrepreneurs, and technologies also acquired more wealth and thereby more war-making capacity. Disruptive innovations still threatened the elite power base in the long term, but a lack of innovation might threaten their lives instantly—via a superior invading army. In a fragmented Europe, sovereigns faced the opposite incentive of rulers of vast empires, who feared domestic discord more than they feared foreign conquest.

Fear of change therefore began to give way to a fear of stagnation. “And thus, it is,” wrote the German philosopher Immanuel Kant in 1784, that the Enlightenment gradually arises “from the selfish purposes of aggrandizement on the part of its rulers, if they understand what is for their own advantage.”

Scientific and Industrial Advances

The associated classical liberal transformation, pioneered by the Dutch Republic, and then taken further by Great Britain and the United States, simultaneously widened the freedom for new experiments and enterprises through greater equality under the law, more secure property rights, and freer domestic economy and expanding markets.

That created a virtuous circle, since the scientific endeavor, businesses forced to compete, and an open society are by their natures works in progress, subject to constant challenge and improvement. They allow more people to experiment with new ideas and methods and combine them in unexpected ways.

As the American economic historian Deirdre McCloskey has shown, these processes went hand in hand with a profound reevaluation of urban and bourgeois life. Whereas commerce and innovation used to be seen at best as necessary evils to fund a hierarchical and aristocratic society, they now started to be seen as desirable, even honorable.

This relative freedom for inquisitiveness and irreverence unleashed first a scientific revolution and then an industrial one. The cumulative nature of knowledge instilled a powerful sense of optimism. When telescopes, microscopes, and the English scientist Isaac Newton unlocked nature’s mysteries, the whole world soon learned about it and started thinking about how natural regularities could be exploited for practical purposes.

Through migrations, correspondence, the printing press, coffee shops, and learned societies, scientists and entrepreneurs systematized knowledge in mechanics, metallurgy, geology, chemistry, soil science, and materials science. That made it possible to consciously manipulate, debug, and adapt methods, materials, and machines to changing needs. New knowledge pointed to new experiments that could be used to interrogate nature further, and the results of those interrogations pointed to new technologies that could be used to grow more food, prevent or cure disease, shape materials, and exploit energy sources.

The modern corporation and financial markets emerged as vehicles for systematically transforming capital and knowledge into goods and services that improved people’s lives. No longer did mankind have to wait for someone, somewhere to stumble on a breakthrough at widely dispersed intervals. An economic and intellectual system devoted to the systematic pursuit of discoveries and innovations had been created. From Manchester and Menlo Park to Silicon Valley, pioneers methodically pushed the technological frontiers further into the unknown, and free competition and international trade made such wonders widely accessible at everyday low prices.

Therefore, for the first time in history, progress did not come to a sudden halt. It continued and accelerated. More people than ever looked at the world’s problems and were free to come up with their own suggested solutions. Finally, mankind reached escape velocity, and progress was no longer a bump on a flat line of human development but a hockey stick, pointing sharply upward.

“It may be that the Enlightenment has ‘tried’ to happen countless times,” writes the British physicist David Deutsch in The Beginning of Infinity. And therefore, it puts our own lucky escape into stark perspective: All previous efforts were cut short, “always snuffed out, usually without a trace. Except this once.”

It should make us deeply grateful that we are among the few who happen to be born in the only era of self-sustained, global progress. But it should also make us focused and combative. History teaches us that progress is not automatic. It only happened because people fought hard for it and for the system of liberty that made it possible.

If we want to remain the one great exception to history’s rule of oppression and stagnation, every new generation must find it within itself the desire to make the world safe for progress.

Blog Post | Energy Production

Degrowthers Are the New Barbarians

The degrowth movement fails to appreciate that human ingenuity and technological innovation can solve the very problems they aim to address.

Summary: Like Rome’s ancient grandeur, today’s economy is supported by human ingenuity. Rome’s technological marvels such as the aqueducts were threatened by barbarians who sought destruction and ultimately achieved it. Modern sources of flourishing are likewise under fire. Today, the “degrowth” movement advocates for radical reductions in energy use. But like the Ostrogoths destroying aqueducts, this new form of regression underestimates human ingenuity as our source of prosperity.

In ancient times, the city of Rome was home to a million people—an achievement not to be repeated in Europe until the 19th century. The city flourished because of extensive Mediterranean trade networks, rule of law, and security provided by the far-flung legions. But Roman life would have been impossible without its aqueducts. These magnificent symbols of human ingenuity and progress brought water to the city, nourishing its population and lubricating its economy.

Rome began its long slide from preeminence in the 3rd century. By the 6th century, Rome was a shadow of its former self. It was then that the invading Ostrogoths sped up the process of decline by cutting Rome’s aqueducts and eventually capturing the city. Fast-forward to today and consider the “degrowth” movement, which advocates for slashing energy use in modern economies.

Degrowthers argue that to avert environmental catastrophe, we must drastically reduce our consumption of energy, particularly fossil fuels. They envision a future where economies shrink, energy use plummets, and humans adopt simpler, less resource-intensive lifestyles. While their intentions sound reasonable, their proposals are as destructive to our society’s prospects as the Ostrogoths’ actions were to ancient Rome.

The aqueducts of Rome were engineering marvels, bringing fresh water from distant sources to the heart of the empire. They enabled the city to thrive, supporting public baths, fountains, and private households. When the Ostrogoths cut these aqueducts, they didn’t just disrupt the water supply; they struck at the core of Roman life. In a similar vein, energy is the lifeblood of modern economies. It powers our hospitals, schools, factories, and homes. Cutting off this supply, as degrowthers propose, would not only slow our economies but would also unravel the fabric of our society.

Consider the immense benefits that energy has brought us. Over the past century, access to abundant and affordable energy has lifted billions out of poverty, extended life expectancies, and driven unprecedented technological progress. Our reliance on energy has enabled us to build skyscrapers, develop lifesaving medical technologies, and connect the world through the internet. To cut energy use drastically would be to turn our backs on these advancements and the potential for future progress.

The degrowth movement fails to appreciate that human ingenuity and technological innovation can solve the very problems they aim to address. Just as the Romans used their engineering prowess to build aqueducts, we can develop new technologies to create cleaner energy sources. Our use of solar and wind power is growing by leaps and bounds. Nuclear power is undergoing a renaissance, while geothermal and fusion energy hold much promise for the future. We’ll likely be able to reduce our reliance on fossil fuels without necessitating a return to pre-industrial lifestyles.

Put differently, degrowthers overlook the dynamic nature of human progress. Throughout history, humanity has faced and overcome numerous challenges. The Industrial Revolution, for example, caused significant environmental damage, but it also set the stage for the technological advancements that would eventually lead to a cleaner environment and greener energy sources. By embracing innovation rather than retreating from progress, we can continue to improve our quality of life while addressing environmental concerns.

It is also crucial to consider the global impact of degrowth policies. Developing nations, which are still striving to reach the levels of prosperity enjoyed in the West, rely heavily on energy to fuel their growth. Imposing stringent energy restrictions would stifle their development, thereby exacerbating global inequalities. Instead, we should focus on ensuring that these countries have access to affordable energy, enabling them to grow and share in the benefits of progress.

Degrowthers’ vision of a future with less energy consumption is a step backward, akin to the barbarians who, lacking understanding or appreciation for Roman civilization, sought only to destroy. Just as Rome’s aqueducts were symbols of human achievement, our energy infrastructure represents the potential for a brighter future. Let’s not let the modern-day barbarians cut it off.

BBC | Innovation

Formula E Electric Vehicles Could Spark Widespread Innovation

“The batteries in the current generation of Formula E cars deliver up to 350kW of power, and can propel a driver to a maximum top speed of 320km/h (199mph), approaching the top speed of traditional F1 cars. And while the racing series may not have the pedigree – or budget – of F1, it does provide a unique and important testing ground for new battery technology that could benefit the entire EV industry.”

From BBC.

Blog Post | Health & Medical Care

Formula One Innovates the Speed of Surgery

Surgeries become 4 to 20 times faster.

Summary: A London hospital, drawing inspiration from Formula One pit stops, has dramatically reduced procedure times, processing patients simultaneously in parallel operating theaters. Using this approach, surgeons are now performing an entire week’s worth of operations in a single day, showcasing the potential for innovation to revolutionize medical systems.

The Times reported in December that a London hospital reduced the time to perform a variety of procedures by 75 percent to 95 percent. Its inspiration? Formula One pit stops. Patients are processed in parallel in high-intensity theaters rather than one after another. The article reports that “under the innovative model, two operating theatres run side by side and as soon as one procedure is finished the next patient is already under anaesthetic and ready to be wheeled in.”

According to the article, Kariem El-Boghdadly, the consultant anesthetist who designed the program with his colleague Imran Ahmad, noted, “We delete any downtime. We get rid of any time that the operating theatre does not have a patient in it being operated on.”

Since 1990, Formula One pit stops have gotten five times faster, declining 80 percent from 8.95 seconds to 1.78 seconds. Pit stops are getting 5 percent faster every year on a compound basis.

The Times article noted that:

  • Surgeons at the hospital are “performing an entire week’s operations in a single day.”
  • The time spent sterilizing the operating theater went from 40 minutes to less than 2 minutes.
  • “The surgical team got through 21 operations on 20 patients and finished by lunchtime. Normally they would do six such procedures and be working all day.”
  • Surgeons operated on “three months’ worth of breast cancer patients in five days.”
  • Surgeons performed a week’s worth of robotic-assisted prostatectomies in one day.
  • Surgeons performed 12 knee replacements in a day when normally it was three or four.

Productivity gains range from 300 percent to 1,900 percent. Even socialized medical systems can enjoy dramatic productive gains if people are free to innovate.

This article was published at Gale Winds on 1/4/2024.